

Via Staffali 24 37062 Dossobuono di Villafranca (VR) Italy tel. 045 8600479 www.venplast.com

FANS

For explosive atmospheres Category ATEX 2G - 2GD - 3G - 3GD

INSTRUCTIONS MANUAL

Revisione 8.0

Get In Touch

℃ Call: 0845 6880112
Email: info@adremit.co.uk

Our Address

FOREWORD	
MARKING	
ORGANIZATIONAL MEASURES	
WARRANTY	7
PRESERVATION OF THE MANUAL	
GENERAL INFORMATION	
SITUATIONS OF DANGER	
LIMITATIONS OF USE	
TABLE FOR THE COMPATIBILITY WITH CHEMICAL AGENTS	
FAN DESCRIPTION	
DESCRIPTION OF THE MOST COMMON ACCESSORIES	16
WARNING	
SAFETY DEVICES	
ENVIRONMENTAL CONDITIONS ALLOWED	. 19
WORK PLACE REQUIREMENTS	. 19
TRANSPORT	
TRANSPORT DATA	
DANGERS	
PRECAUTIONS TO BE ADOPTED	
HOW TO TRANSPORT THE PACKAGING	21
UNPACKAGING	
HOW TO TRANSPORT THE FAN	
INSTALLATION	
HOW TO INSTALL THE FAN	
PRECAUTIONS TO BE ADOPTED	
BEHAVIOUR TO BE ADOPTED	
CONNECTION TO THE ELECTRICITY SUPPLY	
CALIBRATION	
MAINTENANCE	
MAINTENANCE TABLE	
REPARATIONS	
TYPE OF SPECIALIZATION REQUIRED	
PREVENTIVE MEASURES	
FINDING BREAKAGES	
SPARE PARTS TABLE	30
CLEANING	31
TYPE OF SPECIALIZATION REQUIRED	.31
SITUATIONS OF DANGER	31
PREVENTIVE MEASURES	31
RECOMMENDED PRODUCTS	31
BEHAVIOUR TO BE ADOPTED	31
DISMANTLING	. 32
SITUATIONS OF DANGER	
PARTS, ELEMENTS, SUBSTANCES THAT REQUIRE PARTICULAR PROCEDURES	
TERMINOLOGY	
FAN ASSEMBLY AND DISASSEMBLY	
LEVEL OF SPECIALIZATION REQUIRED	
PRECAUTIONS TO BE ADOPTED	
BEHAVIOUR TO BE ADOPTED OUT OF SERVICE	
LEVEL OF SPECIALIZATION REQUIRED.	-
PRECAUTIONS TO BE ADOPTED	
BEAHAVIOUR TO BE ADOPTED	
GENERAL SALES CONDITIONS.	

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 2 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: <u>info@adremit.co.uk</u>

Our Address

FOREWORD

THE PRESENT INSTRUCTION MANUAL IS RELEVANT TO THE ASSEMBLED FAN, EQUIPPED WITH ELECTRIC MOTOR (IF INCLUDED IN THE PURCHASE AGREEMENT), SUITABLE TO BE INSTALLED IN AN EXPLOSION DANGER AREA (ATEX) FOR WHAT CONCERNS THE SPECIFIC INSTRUCTIONS FOR THE ELECTRIC MOTOR, REFERENCE SHOULD BE MADE TO THE RELEVANT MANUAL RELEASED BY THE MANUFACTURER OF THE MOTOR, WHICH IS ENCLOSED TO THE INSTRUCTION MANUAL.

READ THIS MANUAL CAREFULLY BEFORE MACHINE INSTALLATION. EXPLOSIVE ATMOSPHERE IS A SERIOUS DANGER FOR THE HEALTH OF THE OPERATORS AND THEREFORE ALL POSSIBILE PREVENTIVE MEASURES MUST BE CARRIED OUT.

THE PRESENT MANUAL REFERS TO TWO CATEGORIES OF FAN FOR ATEX: CATEGORY 2 AND CATEGORY 3. THE TWO CATEGORIES, IN TURN, DIVERSIFY IN TWO TYPES OF FLUID: GAS (G) OR GAS+DUST (GD).

THESE DATA CAN BE READ BOTH ON THE PLATE APPLIED ONTO THE FAN AND IN THE COMPLIANCE STATEMENT INCLUDED WITH THE MOTOR, AND THEY MARK THEIR SPECIFIC CHARACTERISTICS.

CATEGORY	ТҮРЕ	DESTINATION	REMARKS
2	G (gas)	area 1-2	Atex area, with occasional presence of gas .
2	GD (gas- DUST)	area 21-22	Atex area, with occasional presence of gas-dust .
	G (gas)	area 2	Atex area, gas rarely present.
3	GD (gas- DUST)	area 22	Atex area, gas-dust rarely present.

THE FOLLOWING TABLE DESCRIBES THE CORRESPONDENCE BETWEEN CATEGORY/CLASS AND CLASSIFIED AREA

CATEGORY 2 IS THEREFORE BUILT IN SUCH A WAY AS NOT TO TRIGGER THE AREAS IN WHICH THE ATEX EXPLOSIVE ATMOSPHERE IS OCCASIONALLY POSSIBLE.

CATEGORY 3 INSTEAD IS BUILT IN SUCH A WAY AS NOT TO TRIGGER THE AREAS IN WHICH THE ATEX EXPLOSIVE ATMOSPHERE IS NOT NORMALLY PRESENT, BUT IT CAN RARELY OCCUR (USUALLY IN CASE OF DEFECTS OR FAULTS)

Our Address

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 3 of 35

Get In Touch

Call: 0845 6880112

Email: <u>info@adremit.co.uk</u>

VENPLAST FANS DO NOT BELONG TO CATEGORY 1, WHICH MEANS THAT THEY ARE NOT SUITABLE TO OPERATE IN ATEX 0-20 AREAS, WHERE ATEX IS OFTEN PRESENT OR PRESENT FOR LONG PERIODS OF TIME.

THE **"T" TEMPERATURE CLASS** IDENTIFIES THE MAXIMUM TEMPERATURE OF THE EXPOSED SURFACES OF THE FAN. THE TABLE HERE BELOW SHOWS ALL THE TEMPERATURE CLASSES ADMITTED BY THE ATEX NORMS.

TEMPERATURE CLASS	MAXIMUM TEMPERATURE OF THE SURFACES
T1	450°C
T2	300°C
Т3	200°C
T4	135°C
Т5	100°C
Т6	85°C

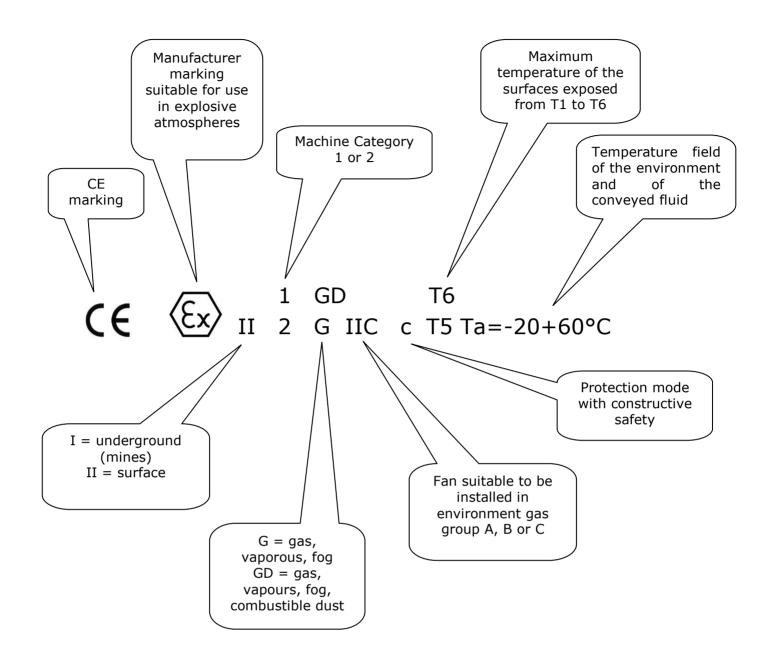
THE CLASS WITH HIGHER NUMBER IS ADEQUATE ALSO FOR THE CLASSES WITH LOWER NUMBER. FOR EXAMPLE: TEMPERATURE CLASS T6 IS SUITABLE ALSO FOR T5-T4-T3-T2-T1

TEMPERATURE CLASS T4 IS SUITABLE ALSO FOR T3-T2-T1, NOT FOR T5 and T6

BEFORE INSTALLATION OF THE MOTOR IT IS IMPORTANT FOR THE USER TO CAREFULLY CHECK THE FAN CATEGORY, TYPE OF FLUID AND TEMPERATURE CLASS.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch


Call: 0845 6880112

Email: info@adremit.co.uk

Our Address

MARKING

ON THE FAN A CE ATEX MARKING PLATE IS APPLIED, WHICH IDENTIFIES EXACTLY THE TYPE OF EQUIPMENT

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 5 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

ORGANIZATIONAL MEASURES

The organizational measures foreseen by the employer (user), in the prevention field and the protection against explosures foresee:

- elaboration of written instructions, if foreseen by the document regarding the protection against explosions,
- training the workers regarding protection from explosions,
- sufficient qualification of the operators,
- application of a system of authorizations for dangerous activities, whereby foreseen by the document regarding protection against explosions,
- interventions of maintenance ,
- checks and surveillance,
- where necessary signals to indicate potentially explosive areas.

The organizational measures adopted must be indicated in the document regarding protection against explosions.

Warning: the expectable duration of the product, for safety regarding protection against explosions, is five years. Once this period has been exceeded the safety functions which protect against explosions are no longer guaranteed .The user must therefore substitute the product or make sure it is completely revisioned by the company of manufacture and other specialized company for the release of a new declaration of conformity.

<u>Warning</u>: this manual describes the block fan + motor that comes with it (electroblowing fan) Should only the fan be supplied, without the electric motor, the parts of the manual concerning the electrical parts must not be taken into consideration.

In this case the responsibility of the choice of the electric motor is up to the buyer, who will have to take care of choosing a motor which is compatible with the fan certification.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

WARRANTY

The manufacturer guarantees its products for a period of (twelve) months from the date of purchase. This warranty covers only free reparation or substitution of those parts that after careful examination by the company of manufacture result to be faulty (this excludes electrical parts and the tools). The warranty, with exclusion of any responsibility for direct or indirect damage, is limited only to faults in the material and is no longer valid should the parts returned result as having been disassembled, tampered with or repaired outside the factory.

The warranty does not cover damage caused by carelessness, negligence, bad or improper use of the equipment and incorrect use by the operator.

The warranty is no longer valid and VENPLAST s.r.l. will not answer for damages should the safey devices that come with the equipment have been removed. In addition, the warranty is no longer valid should non original spare parts be used.

The equipment returned, even if under warranty, must be delivered carriage paid.

See also the chapter "General sales conditions" on the last page.

PRESERVATION OF THE MANUAL

This manual must be kept in a safe place by the head of department's office.

The employer must give this instructions manual (original or copy) to the workers in order to adequately inform them of correct machine use.

GENERAL INFORMATION

SITUATIONS OF DANGER

It is strictly forbidden to introduce limbs or the whole body inside the parts in movement

Is is strictly forbidden to remove, take away, modify and/or alter the safeties.

LIMITATIONS OF USE

The fan has been designed and maunufactured to direct air with presence of corrosive gas/vapours at a temperature between -15C° and +70C°. The limits of concentration of corrosive substances that can be conveyed are shown below. Any other use is forbidden. To find out about compatibility of the fan with the fluids to be conveyed, observe the table that follows, which is to be intended as an example, and it is not exhaustive in all the possible combinations.

Our Address

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: 0845 6880112

Email: info@adremit.co.uk

			me	abov	c uulu	are not binding***					
CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP	CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP
Acetaldehyde		25	3	1	2	Ammonia		25	1	1	1
-water base	100	60	3	2	-	Dry Cas	100	60	1	1	1
solution		100	-	-	-	-Dry Gas		100	-	-	-
		25	3	1	1			25	2	1	1
	40	60	3	2	2	-Liquid	100	60	3	1	-
		100	-	-	-			100	-	-	-
Acetic Acid		25	1	1	1	Ammonium		25	-	1	1
	s25	60	2	1	1	-Acetate	sat	60 100	2	1	1
		100 25	- 1	- 1	1			100 25	- 1	- 1	- 1
	30	60	2	1	1	-Carbonate	-	60	2	1	1
	30	100	-	-	1	-Carbonate	all	100	-	-	1
		25	1	1	1			25	1	1	1
	60	60	2	1	1	-Chloride	sat	60	1	1	1
	00	100	-	-	2	Chionde	501	100	-	-	2
		25	1	2	1			25	1	1	1
	80	60	2	3	3	-Fluoride	25	60	2	1	1
	00	100	-	-	3	Hadhae	25	100	-	_	_
		25	2	1	1			25	1	1	1
-glacial	100	60	3	2	2	-Phosphate	all	60	1	1	1
5		100	-	-	3			100	-	-	-
Acetic Anhydride		25	3	2	1			25	1	1	1
	100	60	3	2	2	-Hydrosulphate	dil	60	2	1	1
		100	-	-	3			100	-	-	-
Acetone		25	3	1	1			25	1	1	1
	10	60	3	-	3	-Hydroxide	28	60	2	1	1
		100	-	-	3			100	-	-	-
		25	3	2	1			25	1	-	1
	100	60	3	2	3	-Metaphosphate	all	60	1	-	1
		100	-	-	3			100	-	-	-
Acetophenone		25	-	-	1			25	1	1	1
	nd	60	-	-	3	-Nitrate	sat	60	1	1	1
		100	-	-	-			100	-	-	1
Acrylonitrile		25	-	1	1			25	1	-	1
	technical pure	60	3	1	1	-Persulphate	all	60	1	-	-
	pure	100	-	-	-			100	-	-	-
Adipic Acid		25	1	1	1			25	1	1	1
-water base	sat	60	2	1	1	-Sulphur	deb	60	2	1	1
solution		100	-	-	-			100	-	-	-
Allyl Alcohol		25	2	1	1			25	1	1	1
	96	60	3	2	1		sat	60	1	1	1
		100	-	-	1			100	-	-	-
Alum		25	1	1	1			25	1	-	1
-water base	dil	60	2	1	1	-Triphosphate	all	60	1	-	1
solution		100	-	-	-			100	-	-	-
		25	-	1	1	Amyl Acetate		25	3	1	2
	sat	60	2	1	1		100	60	3	2	-
		100	-	-	-			100	-	-	-
Aluminum		25	1	1	-	Amyl Alcohol		25	1	1	1
-Chloride	all	60	1	1	-		nd	60	2	1	1
· · · -		100	-	-	-	A million a		100	-	-	1
		25	1	1	-	Aniline		25	3	2	1
-Fluoride	100	60 100	1	1	-		all	60 100	3	2	1
		100 25	- 1	-	-			100 25	- 2	- 2	- 2
Hudrovido	211	25 60	1	-	_	Chlorbydrata	nd	25 60	2	2	2
-Hydroxide	all	100	-	-	_	-Chlorhydrate	nd	100	-	-	2
		25	1	-	-	Anthraquinone Sulfonic		25	1	1	1
-Nitrate	nd	60	1	-	-	Acid	susp	60	2	-	1
	110	100	-	-	-		Sash	100	-	-	-
		25	1	1	1	Aqua Regia		25	2	3	3
-Sulfate	deb	60	1	1	1		100	60	2	3	3
		100	-	-	-		100	100	-	-	3
		25	1	1	1	Arsenious Acid		25	1	1	1
	sat	60	1	1	1		deb	60	2	1	1
		100	-	-	2			100	-	-	-
Ammonia		25	1	1	1			25	1	1	1
-water base	deb	60	2	1	-		80	60	2	1	1
solution		100	-	-	-			100	-	-	2
		25	1	-	1				•	•	
		25	-								
	Sat	60	2	-	-						

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Our Address

Puravent, Adremit Limited, Unit 5a, Commercial Yard, Settle, North Yorkshire, BD24 9RH

Page 8 of 35

Call: <u>0845 6880112</u> **Email:** <u>info@adremit.co.uk</u>

- carbonder ali 60 1 <th1< th=""> 1 1 <</th1<>		,		1		,	e not binding***	Τ.	-	1		
- carbonder ali 60 1 <th1< th=""> 1 1 <</th1<>	CHEMICAL AGENTS	Conc. %		PVC	PE	PP	CHEMICAL AGENTS			PVC	PE	PP
- chonde - chon	Barium			1	1	1	Butyl Alcohol			1	1	1
-chorder100	-Carbonate	all								2		
							Butyl Phenol	100		- 2		
	-Chloride	10					Butyr Filenol	100				
	emenae	10								-		-
							Butylene Glycol	100				1
Sulfare 25 1<	-Hydroxide	all								2		
-sulptorndnd111							Butyric Acid			-		
-sulphur<	-Sulfate	nd					Butyne Aciu	20				
-shiphursatsat6011<			100	-	-	-			100	-	-	3
base comm comm <thcom< th=""> comm <thcom< th=""> com</thcom<></thcom<>												
Beer 2.5 1 1 1 1 Benzaldehyde	-Sulphur	sat						conc				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Beer						Calcium					
Benzaldehyde Ind Ind <t< td=""><td></td><td>comm</td><td></td><td></td><td></td><td>-</td><td></td><td>nd</td><td></td><td></td><td></td><td></td></t<>		comm				-		nd				
nd 60 3 2 2 3			100	-	-	-	-Bisulphate		100	-	-	-
Benzene100 <t< td=""><td>Benzaldehyde</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzaldehyde											
Benzene 100 25 3 3 3 -+Petral 20/80 60 3 3 3 Petral 20/80 60 3 3 3 Chloride 20/80 60 3 3 3 Chloride 20/80 60 - - - -Chloride 20 3 2 1 1 1 -Chloride 25 3 2 1 1 1 Benzolc Acid 25 1 1 1 1 1 Benzolc Acid 25 1 1 1 1 1 Boric Acid 25 1 1 1 1 1 1 Boric Acid 60 2 1 1 1 1 1 Boric Acid 0 60 1 1 1 1 1 Brine 255 1 1 1 1 </td <td></td> <td>nd</td> <td></td> <td></td> <td></td> <td></td> <td>-Carbonate</td> <td>all</td> <td></td> <td></td> <td></td> <td>1</td>		nd					-Carbonate	all				1
100 60 3 3 3 3 3 3 3 3 4 5 6 100 - - 3 3 3 3 3 3 3 3 3 3 4 5 3 - 3 <td>Benzene</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	Benzene											1
ind ind <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>-Chlorate</td> <td>nd</td> <td></td> <td></td> <td></td> <td></td>		100					-Chlorate	nd				
+Petrol -Chloride -Chloride -Chlo												-
Channe Control Contro Control Contro Control Control Contro Contro <thcontro< th=""> Contro Contro</thcontro<>												
-Chloride	-+Petrol	20/80					-Chloride	all				
Chloride technical pure 60 100 - - - Benzoic Acid 25 1												
Benzoic Acid Sat 100 - - - Benzoic Acid Sat 60 2 1 1 100 - <	-Chloride	technical pure					-Hvdroxide	all				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			100	-	-	-	,		100	-	-	-
Indiana Indiana <t< td=""><td>Benzoic Acid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzoic Acid											
Benzyi Alcohol 25 - 1 1 100 60 - 2 2 Boric Acid 25 1 1 1 deb 60 2 1 1 deb 60 2 1 1 deb 60 2 1 1 genz 25 1 1 1 3sat 60 2 1 1 100 - - 1 1 -steam 25 1 1 - 100 60 1 1 - -liquid 100 - - - -liquid 100 60 3 3 - -liquid 100 - - - - -steam 10 60 1 3 3 - 10 60 - 1 - - -		sat					-Hypochlorite	sat		2		1
Ind 60 - 2 2 2 4 -	Benzvi Alcohol									- 1		-
Boric Acid100Boric Acid25111deb60211100110011001sat602111001100110011001100Brine2511-1006011-1006011-10060333-iquid10010060333-iquid10010060133-iquid10010060133Butanen Ges2511110601060322106010010010060100601006010060100100100 <t< td=""><td></td><td>100</td><td></td><td></td><td></td><td></td><td>-Nitrate</td><td>50</td><td></td><td></td><td></td><td>-</td></t<>		100					-Nitrate	50				-
deb 60 2 1			100	-	-	-			100	-	-	-
$ \begin{array}{ c c c c c } & 100 & 1 & 1 & 1 \\ & 25 & 1 & 1 & 1 \\ & 3at & 60 & 10 \\ & 3at & 60 & 10 \\ & 100 & - & - & 1 \\ & 100 & - & - & 1 \\ & 100 & - & - & 1 \\ & 100 & - & - & - & 1 \\ & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & 100 & 100 & - & - & - & - \\ & - & - & - & - \\ & - & -$	Boric Acid											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		deb					-Sulfate	nd				1
sat 60 2 1 1 - - 1 1 -												1
Brine 25 1 - 1 comm 60 1 - - - Bromic Acid 25 1 1 - - - Bromic Acid 10 60 1 1 - - - Bromic Acid 10 60 1 1 - - - Bromic Acid 100 60 1 1 - - - Bromic Acid 100 60 3 3 3 - - - - - Bromic Acid 100 60 3 3 3 -<		sat					-Sulphur	sat				-
comm 60 1 - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>				-	-					-	-	-
Bromic Acid 100	Brine			1	-	1	Carbon			1	1	1
Bromic Acid 25 1 1 - 10 60 1 1 -		comm			-	-	-Dioxide Gas	100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromic Acid											
Bromine 100 -liquid 100 60 3 3 3 -liquid 100 60 3 3 3 -steam minim 60 - 3 3 -steam 25 2 3 3 100 - - 3 3 -steam 600 1 3 3 100 60 1 3 3 100 60 1 3 3 100 60 1 3 3 100 60 1 3 3 100 60 1 1 1 100 60 1 1 1 100 60 1 1 1 100 60 3 2 1 100 7 7 1 1 100 60 3 2<	Bronne Acid	10					-water base solution					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-						-
-liquid -steam inimi 60 -steam inimi 60 -stea	Bromine		25	3	3	3			25	1	1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-liquid	100					-Monoxide	100				1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												-
Image: book book book book book book book boo	-steam	minim					-Sulphur	100				
Butadiene 25 1 - 1 100 60 1 3 3 100 - - - Butane Gas 25 1 1 1 10 60 - - - 10 60 - 1 - 10 60 - 1 - 100 - - - - 100 60 - 1 - 100 - - - - -dry 100 - - - 100 60 3 - - 100 - - - 100 - - - 100 - - - 100 - - - 100 - - - 100 - - - 100 - -	-5100111						-Supriu	100		-		
Image: second secon	Butadiene			1	-	1			25	2	2	3
Butane Gas 25 1 <th< td=""><td></td><td>100</td><td></td><td></td><td></td><td></td><td>-Tetrachloride</td><td>100</td><td></td><td></td><td></td><td>3</td></th<>		100					-Tetrachloride	100				3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rutana Caa						Carbonic Acid					-
Image: second	butane Gas	10						100				-
Butanediol 25 1 - 1 10 60 3 - - 10 60 3 - - 100 - - - - 100 - - - - 100 - - - - 25 2 2 2 - - 100 - - - - - 100 - - - - - Butanone 25 3 1 1 - 100 - - - - - Butyl Acetate 25 3 3 2 - - 100 60 3 2 2 - - - -water base solution 100 - - - - 20 60 2 3 3 3 -		10					-dry	100				-
Indication 100 - <t< td=""><td>Butanediol</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Butanediol											
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 100 - - - all 60 1 - - - Butanone 25 3 1 1 1 100 -		10	60	3	-	-	-water base solution	sat	60	1	-	-
conc. 60 3 3 2 -damp all 60 1 - - Butanone 25 3 1 1 -												
Image: Note of the image: No		conc					-damp	-				
Butanone 25 3 1 1 all 60 3 2 2 100 - - - Butyl Acetate 25 3 3 2 2 100 - - - - - 100 60 3 3 3 - Chloramine 25 1 1 1 0 -		conc.					-uainp	all		-	-	-
Indext Index Index Index <td>Butanone</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>Chloramine</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td>	Butanone						Chloramine	1		1	1	1
Butyl Acetate 25 3 3 2 Chloric Acid 25 1 1 1 100 60 3 3 3 3 2 20 60 2 3 3		all	60	3	2	2	-water bace colution	dil	60	-	-	-
100 60 3 3 3 2 20 60 2 3 3												-
	Butyl Acetate	100					Chloric Acid	20				
		100	100			3		20	100		-	3

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Get In Touch

Our Address

Page 9 of 35

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP	CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	P
Chloride Methylene	100	25 60	3 3	3	3 3	Cyclohexane	all	25 60	3 3	1 -	
Chlorine		100 25	- 2	-	3	Cyclohexanone		100 25	- 3	-	
Chiorine	sat	60	2	-		Cyclonexanone	all	25 60	3	-	
	541	100	-	-	-		un	100	-	-	
		25	1	-	3	Decalin decahydronaphthalene		25	1	1	
-dry gas	10	60 100	2	-	3	uecanyuronapitthalene	nd	60 100	1	2	
		25	2	-	- 3	Dextrin		25	- 1	-	
	100	60	3	-	3	Dexim	nd	60	2	1	
		100	-	-	-			100	-	-	
		25	1	-	3	Dichloroacetic Acid		25	1	1	
-damp gas	5 gr/m3	60	3	-	3		100	60	2	2	
		100 25	- 2	-	- 3	Dichloro Benzene		100 25	- 3	-	
	10 gr/m3	60	2	-	3		all	60	3	-	
		100	-	-	-			100	-	-	
		25	2	-	3	Dichloroethane		25	3	3	
	66 gr/m3	60	2	-	3		100	60 100	3	3	
		100 25	- 3	- 3	- 3	Dichloroethylene		100 25	- 3	- 3	
-liquid	100	60	-	-	3		100	60	3	3	1
		100	-	-	-			100	-	-	L
Chloroacetic Acid		25	1	2	1	Diethylether		25	3	3	
	85	60 100	2	3	3 3		100	60 100	3	3	
		25	- 1	- 2	-	Diglycolic Acid	-	100 25	- 1	- 1	
	100	60	2	3	3		18	60	2	1	
<u></u>		100	-	-	3			100	-	-	L
Chloroform		25	3	2	2	Dimethylamine		25	2	-	
	all	60 100	3	-	3		100	60 100	3	2	
Chlorosulfuric Acid		25	2	3	3	Dioctyl Phthalate		25	- 3	- 1	
	100	60	3	3	3		all	60	3	2	
		100	-	-	3			100	-	-	
Chromic Acid	10	25	1	2	1	Dybutil Phthalate	10	25	3	3	
	10	60 100	2	3	2 3		10	60 100	3	-	
		25	- 1	2	2	Ether		25	- 3	-	
	30	60	2	3	3		all	60	3	-	
		100	-	-	3			100	-	-	
	50	25	1	2	2	Ethyl Acetate		25	3	1	
	50	60 100	2	3	3 3		100	60 100	3	3	
		25	- 1	3	3	Ethyl Alcohol		25	- 1	- 1	-
-Solution	50/35/15	60	2	3	3	· · · ·	nd	60	2	2	
		100	-	-	-			100	-	-	
Citric Acid		25	1	1	1	Ethyl Chloride		25	3	2	
-water base solution	50	60	1	1	1		all	60	3	-	
Copper		100 25	- 3	-	1	Ethyl Ether	_	100 25	- 3	-	
	all	60	3	_	1		all	60	3	_	
-Cyanide		100	-	-	-			100	-	-	
		25	1	1	1	Ethylene Glycol		25	1	1	
-Chloride	sat	60	1	1	1		comm	60	2	3	
		100 25	- 1	- 1	- 3	Ethylene Chlorohydrin		100 25	- 3	-	╞
-Fluoride	all	60	1	1	3		100	25 60	3	-	
		100	-		-		100	100	-	-	
		25	1	1	1	Fatty Acids		25	1	-	
-Nitrate	nd	60	2	1	1		nd	60	1	-	1
		100 25	- 1	- 1	- 3	Fertilizer	_	100 25	- 1	- 1	
-Sulfate	dl	60	1	1	3		%10	60	1	1	
		100	-	-	-			100	-	_	
		25	1	1	1			25	1	1	
	sat	60	1	1	1		sat	60	1	1	
Cresol		100 25	- 2	- 1	- 1	Fluorine Dry Gas		100 25	- 2	- 2	
0.0301	s90	25 60	2	-	-	i luoinie Diy Gas	100	25 60	2	2	
		100	-	-	-		100	100	-	-	1
		25	3	-	2						
	> _	60	3	-	-						
	1	100	-	-	-						

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 10 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	РР	CHEMICAL AGENTS	Conc. %	Temp. (°C)
ormaldehyde		25	1	1	1	Hydrogen		25
		60	2	1	1		all	60
ormic Acid		100 25	- 1	- 1	- 1			100 25
	50	60	2	1	1	-Peroxide	30	60
		100	-	-	-			100
		25	1	1	1			25
	100	60	3	1	1		50	60
ruit		100 25	- 1	- 1	- 1			100 25
ruit	comm	25 60	1	-	1		90	25 60
-pulp and juice	comm	100	-	-	-		90	100
as		25	1	-	-			25
	all	60	1	-	-	-dry sulphide	sat	60
-from exhaust acids		100	-	-	-			100
		25	1	1	1			25
-with nitrous vapors	traces	60	1	1	1	-damp sulphide	sat	60
		100	-	-	-			100
III	100	25 60	1	1	1	Hydrosulphite	0/ 10	25 60
-illuminating	100	100	_				%10	100
asoline		25	1	-	1	hydroxylamine		25
	100	60	1	-	3	sulphate	12	60
-row		100		-	-			100
		25	1	-	1	Hydrofluoric Acid		25
-refined	100	60	-	1	3		10	60
		100	-	-	-			100
ielatine		25	1	1	1			25
	100	60 100	1	-	1		60	60 100
ilucose		25	1	1	1	Iodine		25
	all	60	2	1	1		3	60
	un	100	-	-	-	-dry and damp	5	100
llycerine		25	1	1	1			25
	all	60	1	1	1	-iodine	3	60
-water base solution		100	-	-	1			100
ilycocoll		25	1	1	1	Iron		25
	10	60	1	1	1	-Chloride	10	60
ilycolic Acid		100 25	- 1	- 1	1	emenae		100 25
	37	25 60	1	1	-		cat	25 60
	57	100	-	-	-		sat	100
leptane		25	1	1	3			25
	100	60	2	3	3	-ferrous Chloride	sat	60
		100	-	-	-			100
lexafluorosilicic Acid		25	1	1	1			25
	32	60 100	1	1	1	-Nitrate	nd	60 100
lexane		25	- 1	1	- 1			25
	100	60	2	2	2	-ferric Sulfate	nd	60
	100	100	-	-	-			100
lydrobromic Acid	1	25	1	1	1			25
	10	60	2	1	1	-ferrous Sulfate	nd	60
		100	-	-	3			100
	10	25	1 2	1	1	Isooctane	100	25
	48	60 100	-	1	1 3		100	60 100
lydrochloric Acid	+ +	25	1	1	1	Isopropyl Alcohol		25
	s25	60	2	1	1		100	60
		100	-	-	1			100
		25	1	1	1	Isopropyl Ether		25
	s37	60	1	2	1		100	60
		100	-	-	2			100
lydrocyanic Acid	deh	25 60	1 1	1 1	1 1	Lactic Acid	~20	25 60
	deb	100	-	-	-		<28	100
	ı l	200	1	I		Lanolin		25
							nd	60
						1	1	100

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Page 11 of 35

Get In Touch

Our Address

Puravent, Adremit Limited, Unit 5a, Commercial Yard, Settle, North Yorkshire, BD24 9RH

PVC

1

1

1

1

1

1 -1

2

1

2

1

2

1

1

1

2

-

2

3

2

3

2

3

1

2

-

1

1

1

1

1

1

1

1

1

1

1

-

-

2

2

3

1

2

2

PE PP

_

1 1

1

1

2 1

1 1

2 2

1 1

1 1

1 1

1 1

- 1

1 1

- 1

1 1

1

1 1

2 1

3 3

- 1

1 1

1 1 - 1

1 1

1

1

1

1 1

1

1 1

1

-

- 1

2 2

3 3

- -

1 1

1 1 - 1

1 1

1 2

- 1

1

3

- 3

3

1

- -

1

_

-

-

-

-

-

2 2 - 3

1

1

- 2

CH A	PP	PE	PVC	Temp. (°C)	Conc. %	CHEMICAL AGENTS
Naph	1	1	1	25		Lead
	2	-	1	60	sat	-Acetate
	-	-	-	100		Accure
	1	1	1 2	25 60	100	T . E
	-	-	2 -	100	100	-Tetra-Ethyl
Naph	1	3	1	25		ubricating Oils
•	2	-	1	60	comm	-
	-	-	-	100		
Nick	1	-	1	25		Magnesium
-	1	-	1	60	all	-Carbonate
	-	-	-	100		carbonate
	1 1	1 1	1 1	25 60	ant	Chlorido
-	2	-	-	100	sat	-Chloride
	1	-	1	25		
-	1	-	1	60	all	-Hydroxide
	-	-	-	100		
	1	1	1	25		
	1	1	1	60 100	nd	-Nitrate
Nitri	- 1	-	- 1	100 25		
MITTO	1	1	1	25 60	dl	-Sulfate
	-	-	-	100	ui	Sandte
	1	1	1	25		
	1	1	1	60	sat	
	-	-	-	100		
	1	1	1	25		laleic Acid
	1 1	1	1 -	60 100	nd	
	1	1	1	25		alic Acid
	1	-	-	60	nd	
	-	-	-	100		-
	1 1	1 1	1 2	25 60	100	lercury
	-	-	2 -	100	100	
Nitro	1	-	1	25		
	1	-	1	60	all	-Cyanide
0.1	-	-	-	100		
Oil	1	1	1	25	ant	Chlorido
-	1	1	1 -	60 100	sat	-Chloride
	1	1	1	25		
-	1	1	1	60	nd	-Nitrate
	-	-	-	100		
-	2 2	2 2	1 2	25 60	50	lethanesulfonic Icid
-	2	2	-	60 100	50	
	3	3	1	25		
-	3	3	2	60	100	
	3 1	-	-	100 25		lethyl
-	1	_	-	60	100	
oil	-	-	_	100		-Acetate
	3	3	3	25		
- oil	3	-	-	60	100	-Bromide
	- 3	- 1	- 3	100 25		
-	3	-	3	25 60	100	-Chloride
	3	-	-	100		
	1	1	1	25		lethyl Alcohol
-	2	1	1	60	nd	
	2	- 1	- 2	100 25		lethylamine
_	-	2	2 3	25 60	32	
	-	-	-	100		
	1	1	1	25		Milk
trans	1	-	1	60	100	
Oleic	1	- 1	- 1	100 25		Molasses
0.010	1	2	2	60	comm	

0	CHEMICAL	Conc. %	Temp.	PVC	PE	PP	Γ
	AGENTS	Conc. %	(°C)				
Na	phta	100	25	2	2	1	
		100	60 100	3	3	3	
	-		25	1	-	1	
		comm	60	1	2	2	
			100	-	-	-	
Na	phthalene		25	1	1	3	
		100	60	-	2	3	
NI: a	kal		100	-	-	3	
NIC	kel	211	25	1	1	1	
	-Chloride	all	60 100	1	1 -	1 1	
			25	1	1	1	
	-Nitrate	nd	60	1	1	1	
			100	-	-	2	
			25	1	1	1	
	-Sulfate	dl	60	1	2	1	
	-		100	-	-	-	
		sat	25 60	1	1 1	1 1	
		δαι	100	-	-	-	
Nit	ric Acid		25	3	-	3	1
		anhyd.	60	3	-	3	
			100	-	-	3	
	Γ		25	1	1	1	
		s20	60 100	2	2	2	
	F		100 25	-	-	3 2	ļ
		40	60	1	2	2	
		10	100	-	-	3	
			25	1	3	2	
		60	60	2	3	3	
	_		100 25	- 3	-	3	
		98	60	3	3	3	
		50	100	-	-	3	
Nit	robenzene		25	3	-	1	
		all	60	3	2	2	
Oil			100 25	- 1	-	- 1	
011		100	60	1	_	2	
	-fuel oil	100	100	-	_	-	
	F		25	1	3	3	
	-camphor oil	nd	60	-	3	3	
	F		100 25	-	-	- 1	
	-olive oil	comm	25 60	2	3	1	
	0		100	-	-	-	
	F		25	1	-	1	
	-paraffin oil	nd	60	1	-	3	
	F		100 25	- 1	-	-	ł
	-castornut	comm	60	1	_	1	
oil		20	100	-	_	-	
	cottonar - d		25	1	-	1	
oil	-cottonseed	comm	60	1	-	1	
	F		100	1	-	-	ł
	-linseed oil	comm	25 60	1 2	- 2	1 1	
			100	-	-	-	
	-silicon oil nd		25	1	1	1	
	-silicon oil nd		60	3	2	1	
	F		100	- 1	- 1	- 1	
	-vaseline oil 100		25 60	1 3	1 2	1 2	
	-vaseline oil 100		100	-	-	-	
	F		25	1	1	1	
trar	- nsformer oil	nd	60	2	2	2	
	eic Acid		100 25	- 1	-	- 1	l
Jie		comm	25 60	1	- 2	2	
		comm	100	-	-		l
			100		-	-	

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 12 of 35

Get In Touch

Call: <u>0845 6880112</u>

🗹 Email: info@adremit.co.uk

Our Address

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP
Oleum		25	3	3	3
	nd	60	3	3	3
		100	-	-	-
		25	3	-	3
-steam	minim	60	3	-	3
otcam		100	-	-	-
		25	3	-	3
	high	60	3	-	3
	high	100	-	-	-
Oxalic Acid		25	1	1	1
	10	60	2	1	2
		100	-	-	2
		25	1	1	1
	sat	60	1	1	2
		100	-	-	3
Oxygen		25	1	1	3
	all	60	1	2	3
		100	-	-	-
Ozone		25	1	2	3
	nd	60	2	3	3
		100	-	-	-
Palmitic Acid		25	1	-	-
	10	60	1	-	3
		100	-	-	-
		25	1	-	-
	70	60	1	3	3
		100	-	-	-
Paraffin		25	-	-	-
	nd	60	2	2	1
-emulsion	nu	100	-	-	-
		25			
			1	2	3
	comm	60 100	1	2	3
Developing A -:		100	-	-	-
Perchloric Acid		25	1	1	1
	10	60	2	1	1
		100	-	-	-
	70	25	1	1	1
	70	60 100	2	2	-
Phenol	_	100 25	- 1	- 1	- 1
r nenor	1				
-water base solution	1	60	-	-	1
		100	- ว	-	3
	-00	25	2	1	1
	s90	60	3	-	3
Phenylhydrazine		100	-	-	3
Filenyinyurazine		25	3	2	2
	all	60 100	3	2	2
		100 25	- 1	- 1	- 1
-Chloride	sat	25 60	3	1 3	3
-Chionae	SdL	100			
Phosgene Gas		25	- 1	- 2	- 2
	100	60	2	2	2
	100	100	-	-	-
Phosphoric Acid	1	25	- 1	- 1	- 1
··• · · · · · · · · · · · · · · · · · ·	s25	60	2	1	1
	525	100	-	-	1
		25	1	1	1
	s50	60	1	1	1
	330	100	-		1
		25	- 1	- 1	1
	s85	60	1	2	1
	303	100	-		1
Phosphorus		25	- 1	- 1	1
					-
-Pentoxide	nd	60	2	1	-
i chtoxiuc		100	-	-	-
		25	3	1	1
-Trichloride	100	60	3	-	-
	_	100	-	-	-
Phthalic Acid	1	25	-	1	1
	50	60	3	1	1
		100	-	-	-

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP
Piric Acid		25	1	1	1
	1	60	1	-	-
		100	-	-	-
	. 1	25 60	3 3	1 1	3 3
	>1	100	-	-	-
Plating		25	1	-	-
chemical	comm	60	1	-	-
solution		100	-	-	-
Potassium		25	1	1	1
-	40	60	1	-	-
Dichromate		100	-	-	-
		25	1	-	1
-Borate	sat	60	2	-	1
		100	-	-	-
Dromido	ant	25 60	1 1	1 1	1 1
-Bromide	sat	100	-	-	-
		25	1	1	1
-Carbonate	sat	60	1	1	-
		100	-	-	-
	-	25	1	1	1
-Chloride	sat	60	1	1	1
		100	-	-	2
		25	1	1	1
-Cyanide	sat	60	1	1	1
		100	-	-	-
		25	1	1	1
-Chromate	40	60 100	1	1	1
		100 25	-	-	- 1
-	100	60	1	1	1
Ferrocyanide	100	100	-	-	2
		25	-	1	1
-Fluoride	sat	60	-	1	1
		100	-	-	-
		25	1	1	1
-Hydroxide	60	60	2	1	1
		100 25	- 1	- 1	1
-Nitrate	sat	60	1	1	1
ind dec	but	100	-	-	-
		25	1	-	1
-Perborate	all	60	1	-	-
		100	-	-	-
-	10	25	1	1	1
Permanganate	10	60 100	1	1	2
		100 25	- 1	- 1	- 1
-Persulfate	nd	60	2	1	1
		100	-	-	-
		25	-	-	1
-Sulfate	sat	60	1	1	1
		100 25	- 1	- 1	- 1
-Chromic	nd	60	2	1	1
Sulfate		100	-		2
Propane		25	1	1	1
-020	100	60	-	-	-
-gas		100	-	-	-
11	10	25	1	2	2
-liquid	10	60 100	-	-	-
Propyl	-	100 25	- 1	- 1	- 1
Alcohol	nd				
	114	60 100	2	1	1
Pyridine	-	25	- 3	- 1	- 2
	nd	60	3	2	2
		100	-	-	-
Silicic Acid		25	1	1	1
	all	60 100	1	1	1

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Page 13 of 35

Get In Touch

Our Address

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP	CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	Р
Silver		25	1	-	1	Stearic Acid		25	1		2
_	all	60	1	-	1		100	60	1	2	2
Cyanide		100	-	-	-			100	_	-	
		25	1	1	1	Sulphur		25	1	-	1
-Nitrate	nd	60	2	1	1		100	60	2	-	1
		100	-	-	2			100	-	-	
Sodium		25	1	1	1			25	2	1	
	100	60	1	1	1	-liquid Dioxide	100	60	3	2	
-Acetate		100	_	-	1			100	_	_	
		25	1	1	1			25	1	1	1
-Baking	nd	60	1	1	1	-dry	all	60	1	1	1
Soda		100	_	-	1			100	_	_	
		25	1	1	1			25	1	1	
-	100	60	1	1	1	-water base	sat	60	2	-	
Bisulfite		100	_	-	2	solution		100	_	-	
		25	1	-	1			25	2	3	
-	sat	60	1	-	1	-Trioxide	100	60	2	3	3
Bromide	bat	100	_	-	-	monue	100	100	_	-	
├		25	- 1	- 1	- 1	Sulphuric Acid		25	- 1	- 1	
-	sat	60	1	1	1	earpinance Actu	s10	60	1	1	
Carbonate	Sal						510		-	-	
		100 25	- 1	-	- 1			100 25	- 1	- 1	
-							. 75				
Cyanide	all	60	1	-	1		s75	60	2	2	-
Ļ		100	-	-	-			100	-	-	2
_		25	1	1	1			25	1	2	
- Chlorate	nd	60	2	1	-		s90	60	2	2	1
c.norate		100	-	-	-			100	-	-	
		25	1	1	1			25	2	2	
-	dl	60	2	1	1		s96	60	3	2	3
Chloride		100	-	-	-			100	-	-	3
├		25	1	1	1			25	2	-	
	aat	60	1	1	1	atoomir -	-	60	3	_	
	sat		-	-		-steaming	all				
L L		100			3			100	-	-	
_		25	1	1	-	Sulphuric Acid		25	1	3	-
- Ferrocyanide	sat	60	1	1	-	+Nitric Acid	48/49/3	60	2	3	
,		100	-	-	-	+H2O		100	-	-	
		25	1	-	1			25	2	3	
- Phosphate	all	60	1	-	1		50/50/0	60	3	3	1
Phosphate		100	-	-	1			100	-	-	
F		25	1	1	1			25	1	2	2
	all	60	1	1	1		10/20/70	60	1	2	2
triphosphate	un	100	-	-	1		10,20,70	100	-	-	
		25	1	1	-	Tallow Emulsion		25	1	1	1
-	all	60	1	1	-		comm	60	1	2	2
Fluoride	dli						comm			2	4
		100	-	-	- 1	Tannic Acid		100	-		
-	-60	25	1	1	1	Tannic Acid	10	25	1	1	-
Hydroxide	s60	60	1	1	1		10	60	1	1	1 -
		100 25	- 1	- 1	1	Tartaric Acid		100 25	- 1	- 1	-
-	I-						- 11				
hypochlorite	deb	60	2	-	2		all	60	2	1	
⊢ ⊢		100	-	-	-	Takes 11 11		100	-	-	
-		25	1	-	1	Tetrachloroethane		25	3	2	
Hyposulphite	nd	60	1	-	-		nd	60	3	3	
· · 上		100	-	-	-	.		100	-	-	
		25	1	1	1	Tetrachloroethylene		25	3	2	
-Nitrate	sat	60	1	1	1		nd	60	3	3	
Ļ		100	-	-	-			100	-	-	
_		25	1	-	1	Tetrahydrofuran		25	3	2	
- Perborate	all	60	1	-	-		all	60	3	3	
		100	-	-	-			100	-	-	
		25	1	-	1	Thionyl Chloride		25	3	3	
-Sulfate	dl	60	1	-	1			60	-	-	
Ĺ		100	-	-	-			100	-	-	L
		25	1	1	1	Thiophene		25	3	2	
	sat	60	1	1	1		100	60	3	2	3
		100	-	-	-			100	-	-	
F		25	1	-	1	Tin		25	1	1	
-Sulfite	sat	60	1	-	1		sat	60	1	1	
		100	-	_	-	-stannic chloride		100	-		1
		25	- 1	- 1	- 1			25	- 1	- 1	
-Sulphur	dl	60	2	1	1	-stannous	dl				
-Sulphur	u					chloride	ul	60	1	1	
1		100	- 1	- 1	- 1	L		100	-	-	
	sat	25 60	1	1	1						

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: <u>0845 6880112</u>

Email: <u>info@adremit.co.uk</u>

Page 14 of 35

Get In Touch

Our Address

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP	
Toluene		25	3	2	2	Z
	100	60	3	3	3	
		100	-	-	3	
Toluic Acid	50	25 60	2 3	_	-	
	50	100	-	_	-	
Trichloride Antimony		25	1	1	1	
,	100	60	1	1	1	
		100	-	-	-	
Trichloroacetic Acid		25	1	1	1	
	s50	60	3	2	1	
		100	-	-	-	
Trichloroethylene		25	3	2	3	
	100	60 100	3	2	3	
Triethanolamine		25	2	1	1	
in control and its inc	100	60	3	-	-	
	100	100	-	-	-	
Turpentine		25	2	2	3	í I
	100	60	2	3	3	
		100	-	-	-	
Urea		25	1	1	1	
-water base solution	10	60	2	1	1	
-water base solution		100	-	-	-	Į
		25	1	1	1	
	33	60	2	1	1	
Uric Acid		100 25	- 1	-	-	ł
	10	25 60	2	_	-	
	10	100	-	_	-	
Urine		25	3	1	1	ł
	nd	60	2	1	1	
		100	-	-	-	
Vinyl Acetate		25	3	-	-	1
	nd	60	3	-	-	
		100	-	-	-	ļ
Water		25	1	1	1	
-purified	100	60	1	1	1	
		100	-	-	1	{
con water	100	25 60	1 1	1 1	1 1	
-sea water	100	100	-	-	1	
		25	1	1	1	ł
-distilled	100	60	1	1	1	
		100	-	-	1	
		25	1	1	1]
-rain water	100	60	1	1	1	ļ
		100	-	-	1	ļ
		25	1	1	1	ļ
-drinking water	100	60 100	1	1	1 1	
		100 25	- 1	-	1	ł
Water base solution	alto	60	2	_	-	
soap	aitu	100	-	-	-	l
Whisky		25	1	-	1	ĺ
-	comm	60	1	-	-	
		100	-	-	-	İ
Wine		25	1	1	1	
	comm	60	1	-	1	l
		100	-	-	-	Į
Vinegar		25	1	1	1	ļ
	comm	60 100	2	1	1	
		100	-	-	-	i i

CHEMICAL AGENTS	Conc. %	Temp. (°C)	PVC	PE	PP
Zinc		25	1	-	-
	all	60	1	-	-
-Cyanide		100	-	-	-
		25	1	1	1
-Chloride	dl	60	1	1	1
		100	-	-	-
		25	1	1	1
	sat	60	1	1	1
		100	-	-	2
		25	1	-	1
-Chromate	nd	60	1	-	1
		100	-	-	-
		25	1	-	1
-Nitrate	nd	60	1	-	1
		100	-	-	-
		25	1	1	1
-Sulfate	dl	60	1	1	1
		100	-	-	-
		25	1	1	1
	sat	60	1	1	1
		100	-	-	-

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

FAN DESCRIPTION

АІМ	Moves air with presence of corrosive gas/vapours that can be characterized by corrosive concentrations.
WORK CYCLE	 Aspiration Through the volute suction mouth the air is aspirated through a tube or directly from the environment in which it is installed. Expulsion The air can be directed into apposite pipes or into the outside air from the permanent mouth of the volute.
	1 Volute Plastic structure as described in the catologue, to direct the air with presence of gas/vapours moved by impeller.
	2 Impeller Rotor with vanes, is put into rotation by an electric motor.
MAUNUFACTURE	<i>3</i> Support structure Supports the parts which are used directly to convey air in the presence of gas/vapours.
	4 Motorization Mechanical system that gives the rotary mode to the impeller (in the model with suffix "T" there is a transmission belt-pulley).
OPERATIONS	Direct the air with presence of gas/vapours
	The fan, as effect of the rotation of the impeller, creates a depression that aspirates the fluid into the volute and pushes it into the exit channel.

DESCRIPTION OF THE MOST COMMON ACCESSORIES

The fan has the following accessories that are available on request:

- Anti vibration coupling: absorb the vibrations that can be transmitted in the tubes of the aspiration system.
- Anti vibration supports: absorb the vibrations that can be transmitted to the support of the appliance.
- Butterfly valve: regulates the capacity of air in the tubes.
- Tubes: to connect the fan to the system.
- Condensation discharge: unloads the condensation that forms inside the volute.
- Curves and reductions: make up the junctions between the lengths of the pipes .

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Page 16 of 35

Get In Touch

Our Address

WARNING

ENVIRONMENT AND FLUID SUCKED TEMPERATURE

The fan is suitable to work in an external atmosphere, or fluid sucked, with a maximum temperature field of $-20 + 60^{\circ}$ C.

THE WHOLE MOTOR-FAN

The whole motor-fan consists of two separate parts that are united together , but which have two separate certification procedures (electric and non electric).

Therefore the electric motor , could have a marking plate showing the maximum superficial temperature (T1:T6) which is different (more preventive) from the fan temperature. There are cases in which the motor has a category which is superiour to the one of the fan . The user must therefore know that the reference plate of the whole body must always be the

one on the fan. The rule is , for the applicance as a whole, the lowest category establishes the cateogloy of the whole body.

For example: fan cat.3 + motor cat. 2 = the whole body category3

ASSESSMENTS IMPOSED BY LAW

The electrical systems installed in places with danger of explosion are subject to assessment before the first installation, carried out by regional ARPA (regional institution for the environment protection, ndt), and subsequent checks are to be carried out every two years. Assessments are charge of the end user.

MAINTENANCE

Periodical maintenance of the fan is extremely important to maintain safety functions of the appliance constant in time. The user must therefore adhere to the maintenance table described in the apposite chapter.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: 0845 6880112

Email: info@adremit.co.uk

Our Address

WARNING

INSPECTION DOORS

Some fan models come with internal inspection door. It is recommended to open it only when the machine is stopped.

VIBRATIONS

The model "2GD" (see marking) is suitable for installation with environment with combustible dust (for example wood), therefore an alarm sensor is necessary to intervene when the permitted maximum vibration limit is exceeded, in order to avoid dust caused by an anomalous friction.

Such a device must be connected to the stop sequence of the motor to stop the machine in case of anomaly (only for the model "dust"). The device must be installed by the purchaser. The model category 3GD on the contrary does not need any vibration sensor.

SPEED REGULATION WITH INVERTER

The fan does not come with speed regulation with operation (inverter). Therefore it is not possible to exceed the motor nominal speed or to operate at low speed because the motor would overheat.

Should the buyer need a speed regulation, he must contact the manufacturer to install the necessary additional protection measures (thermoprotector on the motor, speed limiting device, etc...)

CLASSIFICATION OF THE AREA AROUND THE FAN

The fan can not guarantee a perfect gas tightness, therefore the fan is a potential source of Atex emission according to CEI 31-30 regulations. (Classification of the areas with danger of explosion title XI° Legislative decree 81/08)

FOREIGN MATTERS INPUT (only for cat. 2)

The input of foreign matters into the fan can damage it, it is therefore necessary for the user to arrange suitable mesh stopping systems to stop the foreign matters larger than 3 mm.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Get In Touch

Our Address

SAFETY DEVICES

The fan does not have active safety functions since it must be integrated in a system that controls feeding and control.

The buyer must therefore evaluate the risk of the appliance, on the whole, and adopt the necessary measures.

Uncovered moving parts (impeller) represent the main risk, which must be protected by protections in the areas of air entry and exit. These protections are usually represented by the air channels, in the installation phase.

ENVIRONMENTAL CONDITIONS ALLOWED

The fan can be installed in the work environment with a temperature between $-15C^{\circ}$ and $+70C^{\circ}$ and not exceeding 1000 metres above sea level (with the exception of particular agreements with the manufacturer)

WORK PLACE REQUIREMENTS

SUPPORT SURFACE:

Dimensioned so that it can support the weight as declared in the catalogue as well as loads that are already present and must be sufficiently stable to avoid possible falls.

NECESSARY CONNECTIONS:

Electric Aeraulic

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 19 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

TRANSPORT

TRANSPORT DATA

The fan must be transported inside a box or a pallet.

DANGERS

The fan must be handled as it has been delivered, it is heavy and has sharp and protruding parts which are dangerous and therefore the necessary individual items of protection must be used.

The equipment must be cleaned carefully before handling, in order to avoid debris from work processing falling inexpectably during lifting operations .

PRECAUTIONS TO BE ADOPTED

WARNING: take care at all times

WARNING: wear suitable accident prevention clothing.

WARNING: follow the procedures of this manual extremely carefully.

WARNING: make sure the lifting parts are adequately oversized for the weight needing lifting

Do not for any reason go near the equipment if it has not touched the ground and if the lifting measures are not active.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

HOW TO TRANSPORT THE PACKAGING

WARNING: for safety reasons do not handle weights exceeding 25 kg by hand. If so carry out lifting operations together with other operators or use appropriate lifting devices.

- Lift the packaging and place it on the support surface inside the means of trasport.
- Transport to the place of installation.
- Unload the packaging from the means of transport and place it near the place of installation.

UNPACKAGING

- Place the packaging onto a stable surface
- Open the packaging
- Extract the fan

HOW TO TRANSPORT THE FAN

- Manual handling is allowed up to 25 kg
- Over 25 Kg more operators are required or use appropriate lifting measures.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: <u>0845 6880112</u>

Email: <u>info@adremit.co.uk</u>

Our Address

INSTALLATION

HOW TO INSTALL THE FAN

PRECAUTIONS TO BE ADOPTED

WARNING: follow the procedures in this manual extremely carefully

WARNING: use suitable accident prevention clothing .

WARNING: for anything regarding the electric part and for connection contact a qualified electrician

- **WARNING:** before carring out connection to the electricity supply make sure it is impossible to access the impeller with ones limbs. If this is not so segregate the appliance using the protection grid and connect it to the return and aspiration tubes.
- 1. Before carrying out machine installation, the area must be made safe from danger of explosions. This can be obtained by eliminating the sources of emission of inflammable substances and combustible dusts present in or around the area
- 2. All those openings from which an inflammable substance can be emitted under the form of gas, vapour, fog, combustible dusts are sources of emission.
- 3. Make sure possible sources of start up can not spread through the aspiration channels.
- 4. The electrical connections to the motor must be explosion proof in category 2GD, if this is not so the protection results to be void.
- 5. Carry out the earth electrical connection in the apposite clamp supplied by the manufacturer.

The start up source is the physical element which, bringing sufficient energy to an explosive atmosphere, provokes explosion.

Elimination of the trigger sources is of prior importance to prevent explosions.

Foreign bodies that may be aspirated into the fan can be a trigger source, or can damage the fan itself impairing the safety functions.

The installer, or the user, must therefore arrange a suitable system in the channel to stop foreign bodies.

Law EN14986:2007 foresees that a device to stop solid bodies is created with a level of protection not inferiour to IP20.

Our Address

ING M.I. Atex 2-3 GD rev 8.0 DEF

Puravent

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

A list of possible trigger sources follows:

- FREE FLAMES (oxyhydrogen welding)
- ELECTRIC MATERIAL
- SPARKS FROM MECHANICAL /ABRASION (grinding, cutting, abrasion, welding)
- HOT SURFACES (welding)
- ELECTROSTATIC DISCHARGE (insulating material)
- EXOTHERMIC REACTIONS (chemical reactions)
- SHOCK WAVES
- IONOGENIC AND NON IONOGENIC RADIATIONS
- HIGH POWER ELECTROMAGNETIC WAVES

BEHAVIOUR TO BE ADOPTED

- 1. Transport and unpack as described beforehand
- 2. Use the fan itself to individuate the position of the fixing screws.
- 3. Make the slots.
- 4. Position the fan so that the slots of the support structure corrrespond with those of the surface of installation.
- 5. Fix the structure to the surface using pressure stoppers or bolts depending whether the surface of installation is of iron or of cement. If present, use the antivibration supports.
- 6. Connect the suction and delivery pipes, taking care to avoid applying thrust forces onto the fan itself, in such a way as to avoid structural deformations which may give origin to frictions between the revolving unit and the fixed parts.
- 7. Isolate the fan using appropriate fixed protections in order to make it inaccessible.
- 8. If present, apply the condensation discharge in the low part of the volute to allow the condensation to drain away. Make sure there is a system to collect this condensation.
- 9. Protect the fan using apposite grids/grates to avoid contact should the dangerous moving parts be accessible.
- 10.The channels must be in compliance with the ISO norms 5801 and 5802, for correct design and installation devoid of vibrations.

CONNECTION TO THE ELECTRICITY SUPPLY

Must be carried out when the fan has been positioned. A qualified electrician must follow the indications of the electrical technical documentation attached to the terminal box of the electric motor.

It is recommended that ground electrical connection be carried out in the relevant clamp.

The electrical connection must be carried out in compliance with norm CEI EN 6024-1. It is recommended that the motor is protected by short circuits, by overload and lack of phase.

Electrical cabling must be compatible with the equipment category (2 or 3). Cabling being carried out wrongly may render null and void all the Atex protections of the electric fan. In particular it is recommended that the electric performance in category 2 be carried out ExD explosion proof, and complete with resin-bonded locking joints.

CALIBRATION

The fan does not require initial calibration.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Page 23 of 35

Get In Touch

Our Address

MAINTENANCE

WARNING: Maintenance must be carried out only by specialized technical personnel, who know the machine and the risks connected to it.

WARNING: before carrying out maintenance attach signs "maintenance in progress" in well visible and various places.

WARNING: wear protective gloves suitable for contact with the nature of the fluid with possible presence of gas/corrosive/ harmful or toxic vapours and its deposits.

 $\underline{\textbf{WARNING:}}$ wear accident prevention clothing as foreseen by the employer

WARNING: follow the indications in this manual.

WARNING: to see more clearly inside the volute use a portable auxiliary light with protection.

WARNING: before intervening on the fan make sure the electricity supply is cut off and that measures of prevention against undesired start up have been taken.

WARNING: The impeller presents an inertia, therefore after fan shut down it continues to rotate for some time depending on its size. Wait for complete shut down before access. Consider also the possibility that the impeller can start to rotate caused by the currents of

air inside the pipes.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Get In Touch

Call: 0845 6880112

Email: info@adremit.co.uk

Our Address

MAINTENANCE TABLE

INTERVENTION	PERIODICITY	
Replacement of the bearing of the electric motor and of the conveying support, if present.	every 30.000 hours	
Integrity of the marking plate CE ATEX Absence of rust in the internal and external metal	every 2.000 hours	
parts.		
Check of vibrations		
Check of unusual noises		
Fastening of bolts and nuts		
Overall integrity of the structure	500.1	
Internal and external cleaning (in particular removal of inflammable layers of dust)	every 500 hours	
Tensioning of the conveying belts (only for models with belt conveying system)		
Minimum space between impeller and cone and nozzle (min 2 mm)		

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 25 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: <u>info@adremit.co.uk</u>

Our Address

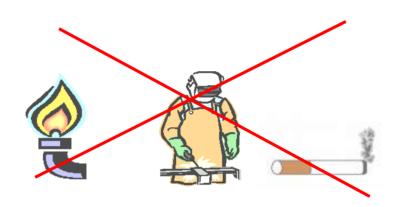
TOOLS USED IN EXPLOSIVE ATMOSPHERE

There are two types of tools:

a) tools that can cause only single sparks when used (for example screwdrivers, spanners, percussion screwdriver);

b) tools which generate a series of sparks when used to saw or grind.

In areas 0 and 20 tools which produce sparks are not allowed.


In areas 1 and 2 only stainless steel tools in confomity to a) are allowed. Tools that conform to b) are allowed only if it can be assured that dangerous explosive atmospheres are not present on the work place.

However, the use of any kind of stainless steel tool is strictly forbidden in area 1 if risk of explosion due to the presence of substances belonging to group II c (in accordance to EN 50014) (acetylene, carbon disulfide, hydrogen), and hydrogen sulphide, ethylene oxide, carbon monoxide, unless dangerous explosive atmosphere is not present on the work place when using these tools.

The use of tools in area 1, 2, 21 and 22 should be subject to a "work permit" (see last page of the manual)

DO NOT USE TOOLS WHICH MAKE SPARKS INSIDE AREAS WITH DANGER OF EXPLOSION

DO NOT USE FREE FLAMES, DO NOT SMOKE

For work which requires production of sparks (e.g., welding, fire grinding) the following measures of protection must be adopted (as in picture), if necessary activate a service of fire prevention surveillance.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 26 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

REPARATIONS

TYPE OF SPECIALIZATION REQUIRED

Maintenance, reparation and cleaning operations must be carried out by skilled and qualified personnel who know the product. We recommend reparations be carried out only by the company of manufacture or by a company specialized in fans.

PREVENTIVE MEASURES

PROGRESS" so that they are visible and in different places.

WARNING: before carrying out reparations on site attach signs "REPARATION IN

WARNING: wear accident prevention clothing.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 27 of 35

Get In Touch

Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

FINDING BREAKAGES

The following table shows :

- The description of the problem that is the most probable symptom of malfunction;
- The possible cause or causes of damage;
- Suggested solutions;

Finding breakages can be carried out by expert and qualified technical maintenance personnel, who know the machine and the risks connected to it.

PROBLEM FOUND	CAUSE	SOLUTIONS		
reduction of power at		Clean tubes and hood, check position of the shutters		
rotation)	Direction of rotation inverted	Check connection of winding on motor terminal box Clean the impeller using the apposite door		
	Impeller obstructed	hatch when the appliance is shut down Check voltage and connect the clamps of the motor		
Eccessive air capacity	Insufficient speed of rotation Speed of rotation	Check transmission, check that the belts do not slide Clean tubes and hood, check position of the shutters.		
		Check direction of rotation; check conditions of turbulence at aspiration; check speed of motor rotation, voltage, defects in winding		
		Check the system and substitute the faulty components		
Insufficient pressure	Speed of rotation too low	Clean tubes and hood, check position of the shutters		
	Direction of rotation inverted	Check electric connection		
	Impeller partially blocked and/or damaged	Check position of assembly and condition of the impeller		
	and/or leakage in the	Substitute the gaskets and verify the condition of channeling		

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 28 of 35

Get In Touch

Our Address

Puravent, Adremit Limited, Unit 5a, Commercial Yard, Settle, North Yorkshire, BD24 9RH

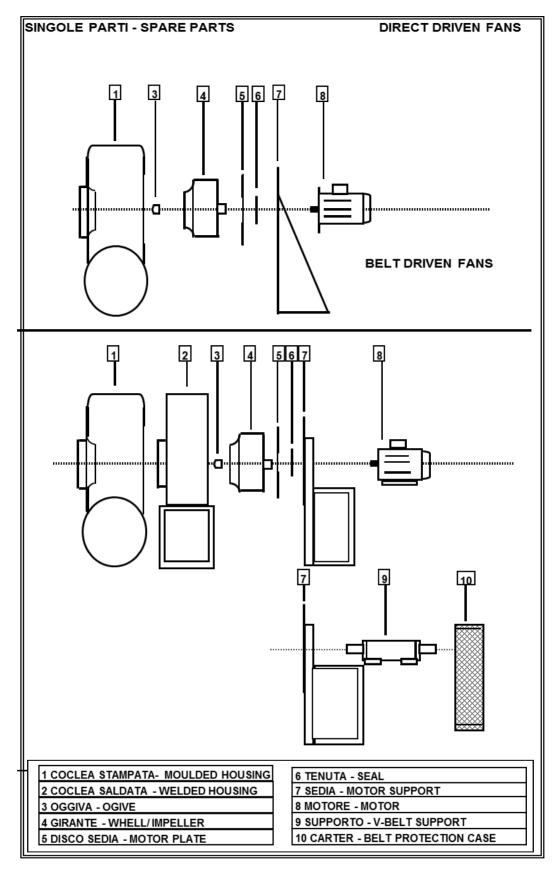
Call: <u>0845 6880112</u>
Call: <u>info@adremit.co.uk</u>

PROBLEM FOUND	CAUSE	SOLUTIONS
satisfactory period of operation	aspiration tubes	
Start up difficult	Excessive power absorption	Check direction of rotation; check the conditions of turbulence at aspiration; check rotation speed of the motor, voltage, winding defects
	Reduced voltage	Check the data on the motor plate
Excessive noise		Use of soundproof systems and/or silencers; choose an appliance with a bigger size equal to the performance or an appliance with minor peripheral speed
	Break down of the bearings	Check bearing wear (in particular for the airtight ones)
	Incorrect impeller balancing or impeller scraping on the volute	Check balancing of the impeller
Vibrations	Unbalance of the rotating parts	Check impeller balancing again
	Support structure not suitable	Add weights to the structure to make it more stable

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 29 of 35

Get In Touch


Call: <u>0845 6880112</u>

Email: info@adremit.co.uk

Our Address

SPARE PARTS TABLE

WARNING: spare parts must be requested exclusively from the manufacturer Venplast communicating the number which identifies the broken part and the type of appliance.

Our Address

ING M.I. Atex 2-3 GD rev 8.0 DEF

Page 30 of 35

Get In Touch

Call: <u>0845 6880112</u>

🗹 Email: info@adremit.co.uk

ravent, Adremit Limited, Unit 5a,

Settle, North Yorkshire, BD24 9F

CLEANING

TYPE OF SPECIALIZATION REQUIRED

Specialized worker with experience of machines and trained regarding accident prevention measures.

SITUATIONS OF DANGER

These are possible only on failure to follow the manual instructions and use the adequate individual items of protection described in this manual.

PREVENTIVE MEASURES

Cut off the electricity supply and carry out the protection measures against undesired start up.

Discharge the condensation inside the volute making it flow away.

Adopt the safety measures for the type of fluid conveyed from the fan (acids, bases, toxic, harmful, corrosive, etc...)

RECOMMENDED PRODUCTS

Use only and exclusively compressed air if the appliance is used to convey air with presence of gas/vapours without particles in suspension.

Should the appliance take in vapours of particular chemical substances, refer to the safety file of the substance itself, to individuate the most suitable product for cleaning.

BEHAVIOUR TO BE ADOPTED

- 1. Stop the appliance by cutting off the electricity supply.
- 2. Gain access to the internal part of the volute by disassembling it as described in the relative chapter
- 3. Clean the internal parts of the volute and of the impeller using compressed air or specific products necessary for air with presence of gas/vapours.
- 4. Assemble the volute as described in the relative chapter

WARNING:

The fans which have been certified for dusts (GD) must be kept clean from exceeding layers of dust, both internally and externally.

The inflammable layer of dust is an obstacle to the heat dissipation of the motor, which may become overheated and set to fire the layer above it.

The internal layer instead, may obstacle the mobile parts in their interconnected motion, and thus triggering frictions.

Follow the cleaning procedures table provided, as laid out by Venplast.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Page 31 of 35

Get In Touch

Our Address

SITUATIONS OF DANGER

Connected to the fact that some of the parts of the appliance are heavy.

PARTS, ELEMENTS, SUBSTANCES THAT REQUIRE PARTICULAR PROCEDURES

No part of the appliance must be disposed of in the environment.

Every part, component or group of components must be grouped in accordance to the type of material.

For the modality to be followed and the means adopted follow the prescriptions of the law in force at the date of dismantling.

Adopt the safety measures in accordance to the type of fluid conveyed by the fan (acids, bases, toxic, harmful, corrosive, etc...)

TERMINOLOGY

ASSEMBLY: (also to associate to assembly and disassemby)

Indispensable notions for installation, maintenance, reparations and possible transportation and dismantling.

INSTALLATION: (also to associate to activation)

Information on how to arrange the machine in accordance to the operation and maintenance requirements etc in conditions of safety. Both for the purposes of machine needs and for the situations on the site of destination.

CALIBRATION: (to associate also to checks and tuning)

Operations and indications relative to correct management of the regulations of the appliance and of the method of verification.

USE: (to associate also to activation)

All the necessary information for conduction distinguishing all the possible conditions of operation: manual, automatic, stand by, emergency, start up, stop etc. including the indications for first start up.

MAINTENANCE:

Normal verifications and restoration of the conditions of optimal operation, especially referred to situations of predictable consumption and/or wear. Must be carried out periodically.

REPARATION:

Interventions to restore the conditions of optimal operation, after a breakage. Where applicable the precautions needed for critical situations must be indicated.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Puravent

Get In Touch

Our Address

FAN ASSEMBLY AND DISASSEMBLY

LEVEL OF SPECIALIZATION REQUIRED

The operations described in this chapter are mentioned again in different parts of the manual. The specialization is already specified at the beginning of the chapter.

PRECAUTIONS TO BE ADOPTED

WARNING: follow the indications in this manual.

WARNING: wear the appropriate accident prevention clothing.

BEHAVIOUR TO BE ADOPTED

DISASSEMBLY

- 1. Stop the appliance by cutting off the electricity supply.
- 2. Remove the aspiration and return tube from the appliance.
- 3. Unscrew the bolts that fix the volute to the support structure
- 4. Unscrew the anchor screw of the impeller on the electric motor shaft.
- 5. Extract the impeller
- 6. Unscrew the bolts that fix the electric motor.
- 7. End of disassembly.

ASSEMBLY

- 1. Screw the anchor screws that fix the electric motor.
- 2. Assemble the impeller on the motor shaft.
- 3. Screw the anchor screws of the impeller on the shaft of the electric motor.
- 4. Screw the anchor screws that fix the volute to the support structure.
- 5. Restore the return and aspiration tube from the appliance.
- 6. End of assembly.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Page 33 of 35

Get In Touch

Our Address

OUT OF USE

LEVEL OF SPECIALIZATION REQUIRED

Specialization refers to any person who is 18 years of age or older, who is intelligent and has a normal physic, who has a copy of this chapter and whose employer can guarantee his specific training.

PRECAUTIONS TO BE ADOPTED

WARNING: follow the indications in this chapter

WARNING: wear the appropriate accident prevention clothing .

BEHAVIOUR TO BE ADOPTED

- 1. Stop the appliance.
- 2. Cut off the electricity supply
- 3. Disconnect the electric cables of the motor.
- 4. Spread a slight layer of oil on the metal parts to prevent oxidation.
- 5. Cover the appliance with a nylon covering.

Page 34 of 35

Get In Touch

Call: <u>0845 6880112</u>

ING M.I. Atex 2-3 GD rev 8.0 DEF

Email: info@adremit.co.uk

Our Address

GENERAL SALES CONDITIONS

1. Acceptance of client orders These sales conditions, with the exception of other written agreement, regulate all the present and future sales contracts between parties. Orders are subject to these sales conditions with the exception of derogations made under written form. Written sales conditions from the client in no way bind VENPLAST SRL and are to be considered invalid by these General Sales Conditions. Orders can not be cancelled or modified without agreement with VENPLAST SRL. In any case cancellations of non standard product orders or orders of products not in stock will not be accepted

2. Prices prices are in Euro, VAT, packaging and transport is not included.

3. Terms and conditions of payment Payment must be carried out exclusively at the VENPLAST SRL headquarters, unless otherwise specified in a written agreement, with legal currency and in accordance to the terms made. Should the client fail to abide to the terms and conditions of payment, VENPLAST SRL can:- request immediate payment of all the credits as a result of expiry of the terms;- suspend supplies in progress or complete them only on receipt of anticipated payment;- withdraw any other contract made with the client and interrupt negotiations in progress;- terminate the contract as in accordance with art.1456 c.c. and claim for damages as a result of client non-fulfilment.

4. **Ritention of title** Should the terms of payment be after delivery of the goods, the material remains property of VENPLAST SRL until payment of the goods has been carried out, pursuant to and in accordance with Article1523 c.c.

5. **Delivery – Costs of transport – Passage of risk** Date of delivery is approximate and not binding. In case of substantial modifications delivery starts form the date of modification itself. No penalty can be applied to VENPLAST SRL for delay of delivery, unless prevision of the fine has been expressely accepted under written form by VENPLAST SRL. All material, unless otherwise specified in a written agreement, are delivered ex warehouse VENPLAST SRL. All possible costs of transport and/or delivery are at the expense of the client. Delivery of the material to the client or to the transporter (in accordance to art. 1523 c.c.) determine the passage of risk at the expense of the client. If the client fails to withdraw the product in the terms agreed or does not supply adequate delivery instructions to VENPLAST SRL, withstanding the passage of risk to the client, VENPLAST SRL has the right to ask the client to reimburse all expenses sustained to preserve the material , and in any case, will carry out delivery in an assigned port without obligation of special warning.

6. Complaints and cancellations or partial or total modifications Complaints relative to quantity, faults and defects of quality or non conformity must be made in written form, under penalty of expiration, within and not exceeding 8 days from the date of receipt of the goods with detailed description of the defects or of the fault contested. VENPLAST SRL does not accept any cost regarding modifications and/or reparations carried out for VENPLAST SRL itself if not expressely agreed beforehand. Should the complaint be unfounded, the buyer must reimburse VENPLAST SRL all the expenses sustained for the verification. In case of damage to the products during trasportation, complaints must be made directly to the company of delivery. Complaints or disputes do not give the buyer the right to suspend payment of invoices relative to faulty material.

7. Returns Return of material will not be accepted unless authorized by VENPLAST SRL and must be made ex warehouse VENPLAST SRL. For return of material under warranty, any product returned but in reality not covered itself will be returned without any intervention to the client or with authorized intervention even over the phone by client will be charged in the invoice and however with cost of trasportation at the expense of the client. In any case VENPLAST SRL will not accept credit notes for a special product, not in stock, obsolete or non marketable.

8. Force majeure

In cases of force majeure supply of material will be suspended until the problem has been solved, subject to the right of VENPLAST SRL, at its own discretion, to cancel it.

9. Warranty VENPLAST SRL guarantees its products for a period of 12 (twelve) months from the date of purchase. This warranty regards only reparations and free substitution of those parts that, after careful examination by VENPLAST SRL, result to be faulty (electric parts are excluded). The warranty excludes any responsibility for direct or indirect damage and it is limited only to defects of material and no longer has effect should the parts returned result as having been disassembled, tampered or repaired outside VENPLAST SRL. Damage caused by negligence, bad or improper use of the machine or incorrect manoeuvres of the operator are excluded from the warranty. Removal of the safey devices, where present, will automatically make the warranty invalid and annul VENPLAST s.r.l. warranty and responsibility. In addition the warranty is no longer valid should non original spare parts be used. Equipment returned, even if under warranty, must be delivered free port.

10. Appliable law – Jurisdiction – Place of jurisdiction Contracts made with VENPLAST SRL are in accordance to the Italian law. For everything not foreseen in this contract the laws of the civil code regarding the sales of movable property are applied as far as possible. For any dispute which should occur regarding interpretation , fulfiment, non-fulfilment, execution or resolution of contracts made with VENPLAST SRL and any other question connected to these will be subject to Italian jurisdiction and the place of jurisdiction will be exclusively the one in Verona.

ING M.I. Atex 2-3 GD rev 8.0 DEF

Call: 0845 6880112

Email: info@adremit.co.uk

Puravent

Get In Touch

Our Address